Theorem alleqd | index | src |

theorem alleqd (_G: wff) (_A1 _A2: set) (_l1 _l2: nat):
  $ _G -> _A1 == _A2 $ >
  $ _G -> _l1 = _l2 $ >
  $ _G -> (all _A1 _l1 <-> all _A2 _l2) $;
StepHypRefExpression
1 hyp _lh
_G -> _l1 = _l2
2 1 lmemseqd
_G -> lmems _l1 = lmems _l2
3 2 nseqd
_G -> lmems _l1 == lmems _l2
4 hyp _Ah
_G -> _A1 == _A2
5 3, 4 sseqd
_G -> (lmems _l1 C_ _A1 <-> lmems _l2 C_ _A2)
6 5 conv all
_G -> (all _A1 _l1 <-> all _A2 _l2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)