theorem leprid2 (a b: nat): $ b <= a, b $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letr | b <= a + b -> a + b <= a, b -> b <= a, b |
|
2 | leaddid2 | b <= a + b |
|
3 | 1, 2 | ax_mp | a + b <= a, b -> b <= a, b |
4 | addlepr | a + b <= a, b |
|
5 | 3, 4 | ax_mp | b <= a, b |