theorem lepr1tr (a b c: nat): $ a <= b $ > $ a <= b, c $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letr | a <= b -> b <= b, c -> a <= b, c |
|
2 | hyp h | a <= b |
|
3 | 1, 2 | ax_mp | b <= b, c -> a <= b, c |
4 | leprid1 | b <= b, c |
|
5 | 3, 4 | ax_mp | a <= b, c |