Theorem lepr1tr | index | src |

theorem lepr1tr (a b c: nat): $ a <= b $ > $ a <= b, c $;
StepHypRefExpression
1 letr
a <= b -> b <= b, c -> a <= b, c
2 hyp h
a <= b
3 1, 2 ax_mp
b <= b, c -> a <= b, c
4 leprid1
b <= b, c
5 3, 4 ax_mp
a <= b, c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)