theorem lepr2tr (a b c: nat): $ a <= c $ > $ a <= b, c $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letr | a <= c -> c <= b, c -> a <= b, c |
|
2 | hyp h | a <= c |
|
3 | 1, 2 | ax_mp | c <= b, c -> a <= b, c |
4 | leprid2 | c <= b, c |
|
5 | 3, 4 | ax_mp | a <= b, c |