theorem inincpl (A B: set): $ A i^i (B i^i Compl A) == 0 $;
Step | Hyp | Ref | Expression |
1 |
|
sseq0 |
A i^i (B i^i Compl A) C_ A i^i Compl A -> A i^i Compl A == 0 -> A i^i (B i^i Compl A) == 0 |
2 |
|
ssin2 |
B i^i Compl A C_ Compl A -> A i^i (B i^i Compl A) C_ A i^i Compl A |
3 |
|
inss2 |
B i^i Compl A C_ Compl A |
4 |
2, 3 |
ax_mp |
A i^i (B i^i Compl A) C_ A i^i Compl A |
5 |
1, 4 |
ax_mp |
A i^i Compl A == 0 -> A i^i (B i^i Compl A) == 0 |
6 |
|
incpl2 |
A i^i Compl A == 0 |
7 |
5, 6 |
ax_mp |
A i^i (B i^i Compl A) == 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)