theorem incpleq0 (A B: set): $ A i^i Compl B == 0 <-> A C_ B $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bitr |
(x e. A i^i Compl B <-> x e. 0 <-> ~x e. A i^i Compl B) -> (~x e. A i^i Compl B <-> x e. A -> x e. B) -> (x e. A i^i Compl B <-> x e. 0 <-> x e. A -> x e. B) |
| 2 |
|
bibin2 |
~x e. 0 -> (x e. A i^i Compl B <-> x e. 0 <-> ~x e. A i^i Compl B) |
| 3 |
|
el02 |
~x e. 0 |
| 4 |
2, 3 |
ax_mp |
x e. A i^i Compl B <-> x e. 0 <-> ~x e. A i^i Compl B |
| 5 |
1, 4 |
ax_mp |
(~x e. A i^i Compl B <-> x e. A -> x e. B) -> (x e. A i^i Compl B <-> x e. 0 <-> x e. A -> x e. B) |
| 6 |
|
bitr4 |
(~x e. A i^i Compl B <-> ~(x e. A /\ ~x e. B)) -> (x e. A -> x e. B <-> ~(x e. A /\ ~x e. B)) -> (~x e. A i^i Compl B <-> x e. A -> x e. B) |
| 7 |
|
noteq |
(x e. A i^i Compl B <-> x e. A /\ ~x e. B) -> (~x e. A i^i Compl B <-> ~(x e. A /\ ~x e. B)) |
| 8 |
|
bitr |
(x e. A i^i Compl B <-> x e. A /\ x e. Compl B) -> (x e. A /\ x e. Compl B <-> x e. A /\ ~x e. B) -> (x e. A i^i Compl B <-> x e. A /\ ~x e. B) |
| 9 |
|
elin |
x e. A i^i Compl B <-> x e. A /\ x e. Compl B |
| 10 |
8, 9 |
ax_mp |
(x e. A /\ x e. Compl B <-> x e. A /\ ~x e. B) -> (x e. A i^i Compl B <-> x e. A /\ ~x e. B) |
| 11 |
|
elcpl |
x e. Compl B <-> ~x e. B |
| 12 |
11 |
aneq2i |
x e. A /\ x e. Compl B <-> x e. A /\ ~x e. B |
| 13 |
10, 12 |
ax_mp |
x e. A i^i Compl B <-> x e. A /\ ~x e. B |
| 14 |
7, 13 |
ax_mp |
~x e. A i^i Compl B <-> ~(x e. A /\ ~x e. B) |
| 15 |
6, 14 |
ax_mp |
(x e. A -> x e. B <-> ~(x e. A /\ ~x e. B)) -> (~x e. A i^i Compl B <-> x e. A -> x e. B) |
| 16 |
|
iman |
x e. A -> x e. B <-> ~(x e. A /\ ~x e. B) |
| 17 |
15, 16 |
ax_mp |
~x e. A i^i Compl B <-> x e. A -> x e. B |
| 18 |
5, 17 |
ax_mp |
x e. A i^i Compl B <-> x e. 0 <-> x e. A -> x e. B |
| 19 |
18 |
aleqi |
A. x (x e. A i^i Compl B <-> x e. 0) <-> A. x (x e. A -> x e. B) |
| 20 |
19 |
conv eqs, subset |
A i^i Compl B == 0 <-> A C_ B |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)