theorem incpleq0 (A B: set): $ A i^i Compl B == 0 <-> A C_ B $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr | (x e. A i^i Compl B <-> x e. 0 <-> ~x e. A i^i Compl B) -> (~x e. A i^i Compl B <-> x e. A -> x e. B) -> (x e. A i^i Compl B <-> x e. 0 <-> x e. A -> x e. B) | 
        
          | 2 |  | bibin2 | ~x e. 0 -> (x e. A i^i Compl B <-> x e. 0 <-> ~x e. A i^i Compl B) | 
        
          | 3 |  | el02 | ~x e. 0 | 
        
          | 4 | 2, 3 | ax_mp | x e. A i^i Compl B <-> x e. 0 <-> ~x e. A i^i Compl B | 
        
          | 5 | 1, 4 | ax_mp | (~x e. A i^i Compl B <-> x e. A -> x e. B) -> (x e. A i^i Compl B <-> x e. 0 <-> x e. A -> x e. B) | 
        
          | 6 |  | bitr4 | (~x e. A i^i Compl B <-> ~(x e. A /\ ~x e. B)) -> (x e. A -> x e. B <-> ~(x e. A /\ ~x e. B)) -> (~x e. A i^i Compl B <-> x e. A -> x e. B) | 
        
          | 7 |  | noteq | (x e. A i^i Compl B <-> x e. A /\ ~x e. B) -> (~x e. A i^i Compl B <-> ~(x e. A /\ ~x e. B)) | 
        
          | 8 |  | bitr | (x e. A i^i Compl B <-> x e. A /\ x e. Compl B) -> (x e. A /\ x e. Compl B <-> x e. A /\ ~x e. B) -> (x e. A i^i Compl B <-> x e. A /\ ~x e. B) | 
        
          | 9 |  | elin | x e. A i^i Compl B <-> x e. A /\ x e. Compl B | 
        
          | 10 | 8, 9 | ax_mp | (x e. A /\ x e. Compl B <-> x e. A /\ ~x e. B) -> (x e. A i^i Compl B <-> x e. A /\ ~x e. B) | 
        
          | 11 |  | elcpl | x e. Compl B <-> ~x e. B | 
        
          | 12 | 11 | aneq2i | x e. A /\ x e. Compl B <-> x e. A /\ ~x e. B | 
        
          | 13 | 10, 12 | ax_mp | x e. A i^i Compl B <-> x e. A /\ ~x e. B | 
        
          | 14 | 7, 13 | ax_mp | ~x e. A i^i Compl B <-> ~(x e. A /\ ~x e. B) | 
        
          | 15 | 6, 14 | ax_mp | (x e. A -> x e. B <-> ~(x e. A /\ ~x e. B)) -> (~x e. A i^i Compl B <-> x e. A -> x e. B) | 
        
          | 16 |  | iman | x e. A -> x e. B <-> ~(x e. A /\ ~x e. B) | 
        
          | 17 | 15, 16 | ax_mp | ~x e. A i^i Compl B <-> x e. A -> x e. B | 
        
          | 18 | 5, 17 | ax_mp | x e. A i^i Compl B <-> x e. 0 <-> x e. A -> x e. B | 
        
          | 19 | 18 | aleqi | A. x (x e. A i^i Compl B <-> x e. 0) <-> A. x (x e. A -> x e. B) | 
        
          | 20 | 19 | conv eqs, subset | A i^i Compl B == 0 <-> A C_ B | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)