Theorem ifpneg2 | index | src |

theorem ifpneg2 (a b c: wff): $ ~b -> (ifp a b c <-> ~a /\ c) $;
StepHypRefExpression
1 ifpnot
ifp (~a) c b <-> ifp a b c
2 ifpneg3
~b -> (ifp (~a) c b <-> ~a /\ c)
3 1, 2 syl5bbr
~b -> (ifp a b c <-> ~a /\ c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)