theorem ifpneg2 (a b c: wff): $ ~b -> (ifp a b c <-> ~a /\ c) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          ifpnot | 
          ifp (~a) c b <-> ifp a b c  | 
        
        
          | 2 | 
           | 
          ifpneg3 | 
          ~b -> (ifp (~a) c b <-> ~a /\ c)  | 
        
        
          | 3 | 
          1, 2 | 
          syl5bbr | 
          ~b -> (ifp a b c <-> ~a /\ c)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp)