Theorem ifpneg3 | index | src |

theorem ifpneg3 (a b c: wff): $ ~c -> (ifp a b c <-> a /\ b) $;
StepHypRefExpression
1 bior2
~(~a /\ c) -> (a /\ b \/ ~a /\ c <-> a /\ b)
2 1 conv ifp
~(~a /\ c) -> (ifp a b c <-> a /\ b)
3 con3
(~a /\ c -> c) -> ~c -> ~(~a /\ c)
4 anr
~a /\ c -> c
5 3, 4 ax_mp
~c -> ~(~a /\ c)
6 2, 5 syl
~c -> (ifp a b c <-> a /\ b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)