theorem ifpnot (a b p: wff): $ ifp (~p) a b <-> ifp p b a $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          bitr4 | 
          (ifp (~p) a b <-> ~~p /\ b \/ ~p /\ a) -> (ifp p b a <-> ~~p /\ b \/ ~p /\ a) -> (ifp (~p) a b <-> ifp p b a)  | 
        
        
          | 2 | 
           | 
          orcomb | 
          ~p /\ a \/ ~~p /\ b <-> ~~p /\ b \/ ~p /\ a  | 
        
        
          | 3 | 
          2 | 
          conv ifp | 
          ifp (~p) a b <-> ~~p /\ b \/ ~p /\ a  | 
        
        
          | 4 | 
          1, 3 | 
          ax_mp | 
          (ifp p b a <-> ~~p /\ b \/ ~p /\ a) -> (ifp (~p) a b <-> ifp p b a)  | 
        
        
          | 5 | 
           | 
          oreq1 | 
          (p /\ b <-> ~~p /\ b) -> (p /\ b \/ ~p /\ a <-> ~~p /\ b \/ ~p /\ a)  | 
        
        
          | 6 | 
          5 | 
          conv ifp | 
          (p /\ b <-> ~~p /\ b) -> (ifp p b a <-> ~~p /\ b \/ ~p /\ a)  | 
        
        
          | 7 | 
           | 
          notnot | 
          p <-> ~~p  | 
        
        
          | 8 | 
          7 | 
          aneq1i | 
          p /\ b <-> ~~p /\ b  | 
        
        
          | 9 | 
          6, 8 | 
          ax_mp | 
          ifp p b a <-> ~~p /\ b \/ ~p /\ a  | 
        
        
          | 10 | 
          4, 9 | 
          ax_mp | 
          ifp (~p) a b <-> ifp p b a  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp)