Theorem ifpnot | index | src |

theorem ifpnot (a b p: wff): $ ifp (~p) a b <-> ifp p b a $;
StepHypRefExpression
1 bitr4
(ifp (~p) a b <-> ~~p /\ b \/ ~p /\ a) -> (ifp p b a <-> ~~p /\ b \/ ~p /\ a) -> (ifp (~p) a b <-> ifp p b a)
2 orcomb
~p /\ a \/ ~~p /\ b <-> ~~p /\ b \/ ~p /\ a
3 2 conv ifp
ifp (~p) a b <-> ~~p /\ b \/ ~p /\ a
4 1, 3 ax_mp
(ifp p b a <-> ~~p /\ b \/ ~p /\ a) -> (ifp (~p) a b <-> ifp p b a)
5 oreq1
(p /\ b <-> ~~p /\ b) -> (p /\ b \/ ~p /\ a <-> ~~p /\ b \/ ~p /\ a)
6 5 conv ifp
(p /\ b <-> ~~p /\ b) -> (ifp p b a <-> ~~p /\ b \/ ~p /\ a)
7 notnot
p <-> ~~p
8 7 aneq1i
p /\ b <-> ~~p /\ b
9 6, 8 ax_mp
ifp p b a <-> ~~p /\ b \/ ~p /\ a
10 4, 9 ax_mp
ifp (~p) a b <-> ifp p b a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)