theorem greceq2d (_G: wff) (z: nat) (_K1 _K2 F: set) (n k: nat):
  $ _G -> _K1 == _K2 $ >
  $ _G -> grec z _K1 F n k = grec z _K2 F n k $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eqidd | 
          _G -> z = z  | 
        
        
          | 2 | 
           | 
          hyp _h | 
          _G -> _K1 == _K2  | 
        
        
          | 3 | 
           | 
          eqsidd | 
          _G -> F == F  | 
        
        
          | 4 | 
           | 
          eqidd | 
          _G -> n = n  | 
        
        
          | 5 | 
           | 
          eqidd | 
          _G -> k = k  | 
        
        
          | 6 | 
          1, 2, 3, 4, 5 | 
          greceqd | 
          _G -> grec z _K1 F n k = grec z _K2 F n k  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)