Theorem greceq2 | index | src |

theorem greceq2 (z: nat) (_K1 _K2 F: set) (n k: nat):
  $ _K1 == _K2 -> grec z _K1 F n k = grec z _K2 F n k $;
StepHypRefExpression
1 id
_K1 == _K2 -> _K1 == _K2
2 1 greceq2d
_K1 == _K2 -> grec z _K1 F n k = grec z _K2 F n k

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)