Theorem grecaux1eq3d | index | src |

theorem grecaux1eq3d (_G: wff) (K: set) (x _z1 _z2 n: nat):
  $ _G -> _z1 = _z2 $ >
  $ _G -> grecaux1 K x _z1 n = grecaux1 K x _z2 n $;
StepHypRefExpression
1 eqsidd
_G -> K == K
2 eqidd
_G -> x = x
3 hyp _h
_G -> _z1 = _z2
4 eqidd
_G -> n = n
5 1, 2, 3, 4 grecaux1eqd
_G -> grecaux1 K x _z1 n = grecaux1 K x _z2 n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)