theorem grecaux1eq3d (_G: wff) (K: set) (x _z1 _z2 n: nat):
$ _G -> _z1 = _z2 $ >
$ _G -> grecaux1 K x _z1 n = grecaux1 K x _z2 n $;
Step | Hyp | Ref | Expression |
1 |
|
eqsidd |
_G -> K == K |
2 |
|
eqidd |
_G -> x = x |
3 |
|
hyp _h |
_G -> _z1 = _z2 |
4 |
|
eqidd |
_G -> n = n |
5 |
1, 2, 3, 4 |
grecaux1eqd |
_G -> grecaux1 K x _z1 n = grecaux1 K x _z2 n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)