theorem exifp (p: wff) {x: nat} (a b: wff x):
$ E. x ifp p a b <-> ifp p (E. x a) (E. x b) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(E. x ifp p a b <-> E. x (p /\ a) \/ E. x (~p /\ b)) ->
(E. x (p /\ a) \/ E. x (~p /\ b) <-> ifp p (E. x a) (E. x b)) ->
(E. x ifp p a b <-> ifp p (E. x a) (E. x b)) |
2 |
|
exor |
E. x (p /\ a \/ ~p /\ b) <-> E. x (p /\ a) \/ E. x (~p /\ b) |
3 |
2 |
conv ifp |
E. x ifp p a b <-> E. x (p /\ a) \/ E. x (~p /\ b) |
4 |
1, 3 |
ax_mp |
(E. x (p /\ a) \/ E. x (~p /\ b) <-> ifp p (E. x a) (E. x b)) -> (E. x ifp p a b <-> ifp p (E. x a) (E. x b)) |
5 |
|
oreq |
(E. x (p /\ a) <-> p /\ E. x a) -> (E. x (~p /\ b) <-> ~p /\ E. x b) -> (E. x (p /\ a) \/ E. x (~p /\ b) <-> p /\ E. x a \/ ~p /\ E. x b) |
6 |
5 |
conv ifp |
(E. x (p /\ a) <-> p /\ E. x a) -> (E. x (~p /\ b) <-> ~p /\ E. x b) -> (E. x (p /\ a) \/ E. x (~p /\ b) <-> ifp p (E. x a) (E. x b)) |
7 |
|
exan1 |
E. x (p /\ a) <-> p /\ E. x a |
8 |
6, 7 |
ax_mp |
(E. x (~p /\ b) <-> ~p /\ E. x b) -> (E. x (p /\ a) \/ E. x (~p /\ b) <-> ifp p (E. x a) (E. x b)) |
9 |
|
exan1 |
E. x (~p /\ b) <-> ~p /\ E. x b |
10 |
8, 9 |
ax_mp |
E. x (p /\ a) \/ E. x (~p /\ b) <-> ifp p (E. x a) (E. x b) |
11 |
4, 10 |
ax_mp |
E. x ifp p a b <-> ifp p (E. x a) (E. x b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5)