theorem ex2nal (R: set) (l1 l2: nat):
$ l1, l2 e. ex2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(l1, l2 e. ex2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. all2 (Compl (Compl R))) ->
(len l1 = len l2 /\ ~l1, l2 e. all2 (Compl (Compl R)) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R) ->
(l1, l2 e. ex2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R) |
2 |
|
dfex2_2 |
l1, l2 e. ex2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. all2 (Compl (Compl R)) |
3 |
1, 2 |
ax_mp |
(len l1 = len l2 /\ ~l1, l2 e. all2 (Compl (Compl R)) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R) ->
(l1, l2 e. ex2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R) |
4 |
|
eleq2 |
all2 (Compl (Compl R)) == all2 R -> (l1, l2 e. all2 (Compl (Compl R)) <-> l1, l2 e. all2 R) |
5 |
|
all2eq |
Compl (Compl R) == R -> all2 (Compl (Compl R)) == all2 R |
6 |
|
cplcpl |
Compl (Compl R) == R |
7 |
5, 6 |
ax_mp |
all2 (Compl (Compl R)) == all2 R |
8 |
4, 7 |
ax_mp |
l1, l2 e. all2 (Compl (Compl R)) <-> l1, l2 e. all2 R |
9 |
8 |
noteqi |
~l1, l2 e. all2 (Compl (Compl R)) <-> ~l1, l2 e. all2 R |
10 |
9 |
aneq2i |
len l1 = len l2 /\ ~l1, l2 e. all2 (Compl (Compl R)) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R |
11 |
3, 10 |
ax_mp |
l1, l2 e. ex2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)