theorem ex2nal (R: set) (l1 l2: nat):
  $ l1, l2 e. ex2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          bitr | 
          (l1, l2 e. ex2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. all2 (Compl (Compl R))) ->
  (len l1 = len l2 /\ ~l1, l2 e. all2 (Compl (Compl R)) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R) ->
  (l1, l2 e. ex2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R)  | 
        
        
          | 2 | 
           | 
          dfex2_2 | 
          l1, l2 e. ex2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. all2 (Compl (Compl R))  | 
        
        
          | 3 | 
          1, 2 | 
          ax_mp | 
          (len l1 = len l2 /\ ~l1, l2 e. all2 (Compl (Compl R)) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R) ->
  (l1, l2 e. ex2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R)  | 
        
        
          | 4 | 
           | 
          eleq2 | 
          all2 (Compl (Compl R)) == all2 R -> (l1, l2 e. all2 (Compl (Compl R)) <-> l1, l2 e. all2 R)  | 
        
        
          | 5 | 
           | 
          all2eq | 
          Compl (Compl R) == R -> all2 (Compl (Compl R)) == all2 R  | 
        
        
          | 6 | 
           | 
          cplcpl | 
          Compl (Compl R) == R  | 
        
        
          | 7 | 
          5, 6 | 
          ax_mp | 
          all2 (Compl (Compl R)) == all2 R  | 
        
        
          | 8 | 
          4, 7 | 
          ax_mp | 
          l1, l2 e. all2 (Compl (Compl R)) <-> l1, l2 e. all2 R  | 
        
        
          | 9 | 
          8 | 
          noteqi | 
          ~l1, l2 e. all2 (Compl (Compl R)) <-> ~l1, l2 e. all2 R  | 
        
        
          | 10 | 
          9 | 
          aneq2i | 
          len l1 = len l2 /\ ~l1, l2 e. all2 (Compl (Compl R)) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R  | 
        
        
          | 11 | 
          3, 10 | 
          ax_mp | 
          l1, l2 e. ex2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. all2 R  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)