Step | Hyp | Ref | Expression |
1 |
|
bitr3 |
(len l1 = len l2 /\ l1, l2 e. ex2 R <-> l1, l2 e. ex2 R) ->
(len l1 = len l2 /\ l1, l2 e. ex2 R <-> len l1 = len l2 /\ ~l1, l2 e. all2 (Compl R)) ->
(l1, l2 e. ex2 R <-> len l1 = len l2 /\ ~l1, l2 e. all2 (Compl R)) |
2 |
|
bian1a |
(l1, l2 e. ex2 R -> len l1 = len l2) -> (len l1 = len l2 /\ l1, l2 e. ex2 R <-> l1, l2 e. ex2 R) |
3 |
|
ex2len |
l1, l2 e. ex2 R -> len l1 = len l2 |
4 |
2, 3 |
ax_mp |
len l1 = len l2 /\ l1, l2 e. ex2 R <-> l1, l2 e. ex2 R |
5 |
1, 4 |
ax_mp |
(len l1 = len l2 /\ l1, l2 e. ex2 R <-> len l1 = len l2 /\ ~l1, l2 e. all2 (Compl R)) -> (l1, l2 e. ex2 R <-> len l1 = len l2 /\ ~l1, l2 e. all2 (Compl R)) |
6 |
|
aneq2a |
(len l1 = len l2 -> (l1, l2 e. ex2 R <-> ~l1, l2 e. all2 (Compl R))) -> (len l1 = len l2 /\ l1, l2 e. ex2 R <-> len l1 = len l2 /\ ~l1, l2 e. all2 (Compl R)) |
7 |
|
con2b |
(l1, l2 e. all2 (Compl R) <-> ~l1, l2 e. ex2 R) -> (l1, l2 e. ex2 R <-> ~l1, l2 e. all2 (Compl R)) |
8 |
|
all2nex |
l1, l2 e. all2 (Compl R) <-> len l1 = len l2 /\ ~l1, l2 e. ex2 R |
9 |
|
bian1 |
len l1 = len l2 -> (len l1 = len l2 /\ ~l1, l2 e. ex2 R <-> ~l1, l2 e. ex2 R) |
10 |
8, 9 |
syl5bb |
len l1 = len l2 -> (l1, l2 e. all2 (Compl R) <-> ~l1, l2 e. ex2 R) |
11 |
7, 10 |
syl |
len l1 = len l2 -> (l1, l2 e. ex2 R <-> ~l1, l2 e. all2 (Compl R)) |
12 |
6, 11 |
ax_mp |
len l1 = len l2 /\ l1, l2 e. ex2 R <-> len l1 = len l2 /\ ~l1, l2 e. all2 (Compl R) |
13 |
5, 12 |
ax_mp |
l1, l2 e. ex2 R <-> len l1 = len l2 /\ ~l1, l2 e. all2 (Compl R) |