Theorem eluni | index | src |

theorem eluni (A: set) (a: nat) {x: nat}:
  $ a e. sUnion A <-> E. x (a e. x /\ x e. A) $;
StepHypRefExpression
1 eleq1
y = a -> (y e. x <-> a e. x)
2 1 aneq1d
y = a -> (y e. x /\ x e. A <-> a e. x /\ x e. A)
3 2 exeqd
y = a -> (E. x (y e. x /\ x e. A) <-> E. x (a e. x /\ x e. A))
4 3 elabe
a e. {y | E. x (y e. x /\ x e. A)} <-> E. x (a e. x /\ x e. A)
5 4 conv sUnion
a e. sUnion A <-> E. x (a e. x /\ x e. A)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)