theorem eluni (A: set) (a: nat) {x: nat}:
  $ a e. sUnion A <-> E. x (a e. x /\ x e. A) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eleq1 | 
          y = a -> (y e. x <-> a e. x)  | 
        
        
          | 2 | 
          1 | 
          aneq1d | 
          y = a -> (y e. x /\ x e. A <-> a e. x /\ x e. A)  | 
        
        
          | 3 | 
          2 | 
          exeqd | 
          y = a -> (E. x (y e. x /\ x e. A) <-> E. x (a e. x /\ x e. A))  | 
        
        
          | 4 | 
          3 | 
          elabe | 
          a e. {y | E. x (y e. x /\ x e. A)} <-> E. x (a e. x /\ x e. A) | 
        
        
          | 5 | 
          4 | 
          conv sUnion | 
          a e. sUnion A <-> E. x (a e. x /\ x e. A)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)