Theorem elb1S | index | src |

theorem elb1S (a b: nat): $ suc a e. b1 b <-> a e. b $;
StepHypRefExpression
1 bitr
(suc a e. b1 b <-> suc a = 0 \/ suc a - 1 e. b) -> (suc a = 0 \/ suc a - 1 e. b <-> a e. b) -> (suc a e. b1 b <-> a e. b)
2 elb1
suc a e. b1 b <-> suc a = 0 \/ suc a - 1 e. b
3 1, 2 ax_mp
(suc a = 0 \/ suc a - 1 e. b <-> a e. b) -> (suc a e. b1 b <-> a e. b)
4 bitr
(suc a = 0 \/ suc a - 1 e. b <-> suc a - 1 e. b) -> (suc a - 1 e. b <-> a e. b) -> (suc a = 0 \/ suc a - 1 e. b <-> a e. b)
5 bior1
~suc a = 0 -> (suc a = 0 \/ suc a - 1 e. b <-> suc a - 1 e. b)
6 peano1
suc a != 0
7 6 conv ne
~suc a = 0
8 5, 7 ax_mp
suc a = 0 \/ suc a - 1 e. b <-> suc a - 1 e. b
9 4, 8 ax_mp
(suc a - 1 e. b <-> a e. b) -> (suc a = 0 \/ suc a - 1 e. b <-> a e. b)
10 eleq1
suc a - 1 = a -> (suc a - 1 e. b <-> a e. b)
11 sucsub1
suc a - 1 = a
12 10, 11 ax_mp
suc a - 1 e. b <-> a e. b
13 9, 12 ax_mp
suc a = 0 \/ suc a - 1 e. b <-> a e. b
14 3, 13 ax_mp
suc a e. b1 b <-> a e. b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)