theorem dvdgcdlem (G: wff) (a b c d: nat) {x: nat}:
$ G -> (x || d <-> x || a /\ x || b) $ >
$ G -> (c || gcd a b <-> c || a /\ c || b) $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h |
G -> (x || d <-> x || a /\ x || b) |
2 |
1 |
eqgcd |
G -> gcd a b = d |
3 |
2 |
dvdeq2d |
G -> (c || gcd a b <-> c || d) |
4 |
|
dvdeq1 |
x = c -> (x || d <-> c || d) |
5 |
|
dvdeq1 |
x = c -> (x || a <-> c || a) |
6 |
|
dvdeq1 |
x = c -> (x || b <-> c || b) |
7 |
5, 6 |
aneqd |
x = c -> (x || a /\ x || b <-> c || a /\ c || b) |
8 |
4, 7 |
bieqd |
x = c -> (x || d <-> x || a /\ x || b <-> (c || d <-> c || a /\ c || b)) |
9 |
8 |
eale |
A. x (x || d <-> x || a /\ x || b) -> (c || d <-> c || a /\ c || b) |
10 |
1 |
iald |
G -> A. x (x || d <-> x || a /\ x || b) |
11 |
9, 10 |
syl |
G -> (c || d <-> c || a /\ c || b) |
12 |
3, 11 |
bitrd |
G -> (c || gcd a b <-> c || a /\ c || b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)