Theorem gcd01 | index | src |

theorem gcd01 (b: nat): $ gcd 0 b = b $;
StepHypRefExpression
3
d || 0
4
d || 0 /\ d || b <-> d || b
5
d || b <-> d || 0 /\ d || b
6
T. -> (d || b <-> d || 0 /\ d || b)
7
T. -> gcd 0 b = b
8
gcd 0 b = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)