theorem gcd01 (b: nat): $ gcd 0 b = b $;
Step | Hyp | Ref | Expression |
---|---|---|---|
3 |
d || 0 |
||
4 |
d || 0 /\ d || b <-> d || b |
||
5 |
d || b <-> d || 0 /\ d || b |
||
6 |
T. -> (d || b <-> d || 0 /\ d || b) |
||
7 |
T. -> gcd 0 b = b |
||
8 |
gcd 0 b = b |