Theorem gcd01 | index | src |

theorem gcd01 (b: nat): $ gcd 0 b = b $;
StepHypRefExpression
1 bicom
(d || 0 /\ d || b <-> d || b) -> (d || b <-> d || 0 /\ d || b)
2 bian1
d || 0 -> (d || 0 /\ d || b <-> d || b)
3 dvd02
d || 0
4 2, 3 ax_mp
d || 0 /\ d || b <-> d || b
5 1, 4 ax_mp
d || b <-> d || 0 /\ d || b
6 5 a1i
T. -> (d || b <-> d || 0 /\ d || b)
7 6 eqgcd
T. -> gcd 0 b = b
8 7 trud
gcd 0 b = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)