Theorem coeq1d | index | src |

theorem coeq1d (_G: wff) (_F1 _F2 G: set):
  $ _G -> _F1 == _F2 $ >
  $ _G -> _F1 o> G == _F2 o> G $;
StepHypRefExpression
1 hyp _h
_G -> _F1 == _F2
2 eqsidd
_G -> G == G
3 1, 2 coeqd
_G -> _F1 o> G == _F2 o> G

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)