Theorem coeq | index | src |

theorem coeq (_F1 _F2 _G1 _G2: set):
  $ _F1 == _F2 -> _G1 == _G2 -> _F1 o> _G1 == _F2 o> _G2 $;
StepHypRefExpression
1 anl
_F1 == _F2 /\ _G1 == _G2 -> _F1 == _F2
2 anr
_F1 == _F2 /\ _G1 == _G2 -> _G1 == _G2
3 1, 2 coeqd
_F1 == _F2 /\ _G1 == _G2 -> _F1 o> _G1 == _F2 o> _G2
4 3 exp
_F1 == _F2 -> _G1 == _G2 -> _F1 o> _G1 == _F2 o> _G2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)