Theorem birexan1a | index | src |

theorem birexan1a (c: wff) {x: nat} (p a b: wff x):
  $ c -> (a <-> E. x (p /\ b)) $ >
  $ a /\ c <-> E. x (p /\ (b /\ c)) $;
StepHypRefExpression
1 bitr
(a /\ c <-> E. x (p /\ b /\ c)) -> (E. x (p /\ b /\ c) <-> E. x (p /\ (b /\ c))) -> (a /\ c <-> E. x (p /\ (b /\ c)))
2 hyp h
c -> (a <-> E. x (p /\ b))
3 2 biexan1a
a /\ c <-> E. x (p /\ b /\ c)
4 1, 3 ax_mp
(E. x (p /\ b /\ c) <-> E. x (p /\ (b /\ c))) -> (a /\ c <-> E. x (p /\ (b /\ c)))
5 anass
p /\ b /\ c <-> p /\ (b /\ c)
6 5 exeqi
E. x (p /\ b /\ c) <-> E. x (p /\ (b /\ c))
7 4, 6 ax_mp
a /\ c <-> E. x (p /\ (b /\ c))

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)