theorem birexan1a (c: wff) {x: nat} (p a b: wff x):
$ c -> (a <-> E. x (p /\ b)) $ >
$ a /\ c <-> E. x (p /\ (b /\ c)) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a /\ c <-> E. x (p /\ b /\ c)) -> (E. x (p /\ b /\ c) <-> E. x (p /\ (b /\ c))) -> (a /\ c <-> E. x (p /\ (b /\ c))) |
2 |
|
hyp h |
c -> (a <-> E. x (p /\ b)) |
3 |
2 |
biexan1a |
a /\ c <-> E. x (p /\ b /\ c) |
4 |
1, 3 |
ax_mp |
(E. x (p /\ b /\ c) <-> E. x (p /\ (b /\ c))) -> (a /\ c <-> E. x (p /\ (b /\ c))) |
5 |
|
anass |
p /\ b /\ c <-> p /\ (b /\ c) |
6 |
5 |
exeqi |
E. x (p /\ b /\ c) <-> E. x (p /\ (b /\ c)) |
7 |
4, 6 |
ax_mp |
a /\ c <-> E. x (p /\ (b /\ c)) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5)