theorem bian2exd (G c: wff) {x: nat} (a b: wff x):
  $ G -> (a <-> b /\ c) $ >
  $ G -> (E. x a <-> E. x b /\ c) $;
    | Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exan2 | E. x (b /\ c) <-> E. x b /\ c | |
| 2 | hyp h | G -> (a <-> b /\ c) | |
| 3 | 2 | exeqd | G -> (E. x a <-> E. x (b /\ c)) | 
| 4 | 1, 3 | syl6bb | G -> (E. x a <-> E. x b /\ c) |