Theorem b1neb0 | index | src |

theorem b1neb0 (a b: nat): $ b1 a != b0 b $;
StepHypRefExpression
1 b1odd
odd (b1 a)
2 oddeq
b1 a = b0 b -> (odd (b1 a) <-> odd (b0 b))
3 1, 2 mpbii
b1 a = b0 b -> odd (b0 b)
4 b0odd
~odd (b0 b)
5 3, 4 mt
~b1 a = b0 b
6 5 conv ne
b1 a != b0 b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)