Theorem b0neb1 | index | src |

theorem b0neb1 (a b: nat): $ b0 a != b1 b $;
StepHypRefExpression
1 necom
b1 b != b0 a -> b0 a != b1 b
2 b1neb0
b1 b != b0 a
3 1, 2 ax_mp
b0 a != b1 b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)