Theorem
sucb0
≪
|
index
|
src
|
≫
theorem sucb0 (a: nat): $ suc (b0 a) = b1 a $;
Step
Hyp
Ref
Expression
1
eqid
suc (b0 a) = suc (b0 a)
2
1
conv
b1
suc (b0 a) = b1 a
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)
,
axs_pred_calc
(
ax_gen
,
ax_4
,
ax_5
,
ax_6
,
ax_7
)