Theorem sucb0 | index | src |

theorem sucb0 (a: nat): $ suc (b0 a) = b1 a $;
StepHypRefExpression
1 eqid
suc (b0 a) = suc (b0 a)
2 1 conv b1
suc (b0 a) = b1 a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)