Theorem all2cnv | index | src |

theorem all2cnv (R: set): $ all2 (cnv R) == cnv (all2 R) $;
StepHypRefExpression
1 bitr4
(a1, a2 e. all2 (cnv R) <-> a2, a1 e. all2 R) -> (a1, a2 e. cnv (all2 R) <-> a2, a1 e. all2 R) -> (a1, a2 e. all2 (cnv R) <-> a1, a2 e. cnv (all2 R))
2 all2com
a1, a2 e. all2 (cnv R) <-> a2, a1 e. all2 R
3 1, 2 ax_mp
(a1, a2 e. cnv (all2 R) <-> a2, a1 e. all2 R) -> (a1, a2 e. all2 (cnv R) <-> a1, a2 e. cnv (all2 R))
4 prcnv
a1, a2 e. cnv (all2 R) <-> a2, a1 e. all2 R
5 3, 4 ax_mp
a1, a2 e. all2 (cnv R) <-> a1, a2 e. cnv (all2 R)
6 5 eqri2
all2 (cnv R) == cnv (all2 R)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)