Step | Hyp | Ref | Expression |
1 |
|
eqtr3 |
(1 -ZN 0) *Z (zfst a -ZN zsnd a) = b0 1 *Z a -> (1 -ZN 0) *Z (zfst a -ZN zsnd a) = a -> b0 1 *Z a = a |
2 |
|
zmuleq |
1 -ZN 0 = b0 1 -> zfst a -ZN zsnd a = a -> (1 -ZN 0) *Z (zfst a -ZN zsnd a) = b0 1 *Z a |
3 |
|
znsub02 |
1 -ZN 0 = b0 1 |
4 |
2, 3 |
ax_mp |
zfst a -ZN zsnd a = a -> (1 -ZN 0) *Z (zfst a -ZN zsnd a) = b0 1 *Z a |
5 |
|
zfstsnd |
zfst a -ZN zsnd a = a |
6 |
4, 5 |
ax_mp |
(1 -ZN 0) *Z (zfst a -ZN zsnd a) = b0 1 *Z a |
7 |
1, 6 |
ax_mp |
(1 -ZN 0) *Z (zfst a -ZN zsnd a) = a -> b0 1 *Z a = a |
8 |
|
eqtr |
(1 -ZN 0) *Z (zfst a -ZN zsnd a) = 1 * zfst a + 0 * zsnd a -ZN (1 * zsnd a + zfst a * 0) ->
1 * zfst a + 0 * zsnd a -ZN (1 * zsnd a + zfst a * 0) = a ->
(1 -ZN 0) *Z (zfst a -ZN zsnd a) = a |
9 |
|
zmulzn |
(1 -ZN 0) *Z (zfst a -ZN zsnd a) = 1 * zfst a + 0 * zsnd a -ZN (1 * zsnd a + zfst a * 0) |
10 |
8, 9 |
ax_mp |
1 * zfst a + 0 * zsnd a -ZN (1 * zsnd a + zfst a * 0) = a -> (1 -ZN 0) *Z (zfst a -ZN zsnd a) = a |
11 |
|
eqtr |
1 * zfst a + 0 * zsnd a -ZN (1 * zsnd a + zfst a * 0) = zfst a -ZN zsnd a -> zfst a -ZN zsnd a = a -> 1 * zfst a + 0 * zsnd a -ZN (1 * zsnd a + zfst a * 0) = a |
12 |
|
znsubeq |
1 * zfst a + 0 * zsnd a = zfst a -> 1 * zsnd a + zfst a * 0 = zsnd a -> 1 * zfst a + 0 * zsnd a -ZN (1 * zsnd a + zfst a * 0) = zfst a -ZN zsnd a |
13 |
|
eqtr |
1 * zfst a + 0 * zsnd a = zfst a + 0 -> zfst a + 0 = zfst a -> 1 * zfst a + 0 * zsnd a = zfst a |
14 |
|
addeq |
1 * zfst a = zfst a -> 0 * zsnd a = 0 -> 1 * zfst a + 0 * zsnd a = zfst a + 0 |
15 |
|
mul11 |
1 * zfst a = zfst a |
16 |
14, 15 |
ax_mp |
0 * zsnd a = 0 -> 1 * zfst a + 0 * zsnd a = zfst a + 0 |
17 |
|
mul01 |
0 * zsnd a = 0 |
18 |
16, 17 |
ax_mp |
1 * zfst a + 0 * zsnd a = zfst a + 0 |
19 |
13, 18 |
ax_mp |
zfst a + 0 = zfst a -> 1 * zfst a + 0 * zsnd a = zfst a |
20 |
|
add0 |
zfst a + 0 = zfst a |
21 |
19, 20 |
ax_mp |
1 * zfst a + 0 * zsnd a = zfst a |
22 |
12, 21 |
ax_mp |
1 * zsnd a + zfst a * 0 = zsnd a -> 1 * zfst a + 0 * zsnd a -ZN (1 * zsnd a + zfst a * 0) = zfst a -ZN zsnd a |
23 |
|
eqtr |
1 * zsnd a + zfst a * 0 = zsnd a + 0 -> zsnd a + 0 = zsnd a -> 1 * zsnd a + zfst a * 0 = zsnd a |
24 |
|
addeq |
1 * zsnd a = zsnd a -> zfst a * 0 = 0 -> 1 * zsnd a + zfst a * 0 = zsnd a + 0 |
25 |
|
mul11 |
1 * zsnd a = zsnd a |
26 |
24, 25 |
ax_mp |
zfst a * 0 = 0 -> 1 * zsnd a + zfst a * 0 = zsnd a + 0 |
27 |
|
mul02 |
zfst a * 0 = 0 |
28 |
26, 27 |
ax_mp |
1 * zsnd a + zfst a * 0 = zsnd a + 0 |
29 |
23, 28 |
ax_mp |
zsnd a + 0 = zsnd a -> 1 * zsnd a + zfst a * 0 = zsnd a |
30 |
|
add0 |
zsnd a + 0 = zsnd a |
31 |
29, 30 |
ax_mp |
1 * zsnd a + zfst a * 0 = zsnd a |
32 |
22, 31 |
ax_mp |
1 * zfst a + 0 * zsnd a -ZN (1 * zsnd a + zfst a * 0) = zfst a -ZN zsnd a |
33 |
11, 32 |
ax_mp |
zfst a -ZN zsnd a = a -> 1 * zfst a + 0 * zsnd a -ZN (1 * zsnd a + zfst a * 0) = a |
34 |
33, 5 |
ax_mp |
1 * zfst a + 0 * zsnd a -ZN (1 * zsnd a + zfst a * 0) = a |
35 |
10, 34 |
ax_mp |
(1 -ZN 0) *Z (zfst a -ZN zsnd a) = a |
36 |
7, 35 |
ax_mp |
b0 1 *Z a = a |