Theorem zmodeqd | index | src |

theorem zmodeqd (_G: wff) (_a1 _a2 _n1 _n2: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _n1 = _n2 $ >
  $ _G -> _a1 %Z _n1 = _a2 %Z _n2 $;
StepHypRefExpression
1 hyp _ah
_G -> _a1 = _a2
2 1 zfsteqd
_G -> zfst _a1 = zfst _a2
3 hyp _nh
_G -> _n1 = _n2
4 2, 3 addeqd
_G -> zfst _a1 + _n1 = zfst _a2 + _n2
5 1 zsndeqd
_G -> zsnd _a1 = zsnd _a2
6 5, 3 modeqd
_G -> zsnd _a1 % _n1 = zsnd _a2 % _n2
7 4, 6 znsubeqd
_G -> zfst _a1 + _n1 -ZN zsnd _a1 % _n1 = zfst _a2 + _n2 -ZN zsnd _a2 % _n2
8 7 zabseqd
_G -> zabs (zfst _a1 + _n1 -ZN zsnd _a1 % _n1) = zabs (zfst _a2 + _n2 -ZN zsnd _a2 % _n2)
9 8, 3 modeqd
_G -> zabs (zfst _a1 + _n1 -ZN zsnd _a1 % _n1) % _n1 = zabs (zfst _a2 + _n2 -ZN zsnd _a2 % _n2) % _n2
10 9 conv zmod
_G -> _a1 %Z _n1 = _a2 %Z _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)