Theorem zmodeq1d | index | src |

theorem zmodeq1d (_G: wff) (_a1 _a2 n: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _a1 %Z n = _a2 %Z n $;
StepHypRefExpression
1 hyp _h
_G -> _a1 = _a2
2 eqidd
_G -> n = n
3 1, 2 zmodeqd
_G -> _a1 %Z n = _a2 %Z n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)