theorem zlteq2d (_G: wff) (m _n1 _n2: nat): $ _G -> _n1 = _n2 $ > $ _G -> (mm
Step Hyp Ref Expression 1 eqidd _G -> m = m2 hyp _h _G -> _n1 = _n23 1, 2 zlteqd _G -> (m <Z _n1 <-> m <Z _n2)Axiom use
axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)