theorem zlteqd (_G: wff) (_m1 _m2 _n1 _n2: nat):
$ _G -> _m1 = _m2 $ >
$ _G -> _n1 = _n2 $ >
$ _G -> (_m1 _m2
Step | Hyp | Ref | Expression |
1 |
|
hyp _mh |
_G -> _m1 = _m2 |
2 |
|
hyp _nh |
_G -> _n1 = _n2 |
3 |
1, 2 |
zsubeqd |
_G -> _m1 -Z _n1 = _m2 -Z _n2 |
4 |
3 |
oddeqd |
_G -> (odd (_m1 -Z _n1) <-> odd (_m2 -Z _n2)) |
5 |
4 |
conv zlt |
_G -> (_m1 <Z _n1 <-> _m2 <Z _n2) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)