theorem zlteq1d (_G: wff) (_m1 _m2 n: nat): $ _G -> _m1 = _m2 $ > $ _G -> (_m1_m2 
Step Hyp Ref Expression 1 hyp _h 2 eqidd 3 1, 2 zlteqd Axiom use
axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)