theorem zlteq1d (_G: wff) (_m1 _m2 n: nat): $ _G -> _m1 = _m2 $ > $ _G -> (_m1_m2
Step Hyp Ref Expression 1 hyp _h _G -> _m1 = _m22 eqidd _G -> n = n3 1, 2 zlteqd _G -> (_m1 <Z n <-> _m2 <Z n)Axiom use
axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)