theorem zipeq2d (_G: wff) (l1 _l21 _l22: nat): $ _G -> _l21 = _l22 $ > $ _G -> zip l1 _l21 = zip l1 _l22 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | _G -> l1 = l1 |
|
2 | hyp _h | _G -> _l21 = _l22 |
|
3 | 1, 2 | zipeqd | _G -> zip l1 _l21 = zip l1 _l22 |