Theorem zeqmeqd | index | src |

theorem zeqmeqd (_G: wff) (_n1 _n2 _a1 _a2 _b1 _b2: nat):
  $ _G -> _n1 = _n2 $ >
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> (modZ(_n1): _a1 = _b1 <-> modZ(_n2): _a2 = _b2) $;
StepHypRefExpression
1 hyp _nh
_G -> _n1 = _n2
2 1 b0eqd
_G -> b0 _n1 = b0 _n2
3 hyp _ah
_G -> _a1 = _a2
4 hyp _bh
_G -> _b1 = _b2
5 3, 4 zsubeqd
_G -> _a1 -Z _b1 = _a2 -Z _b2
6 2, 5 zdvdeqd
_G -> (b0 _n1 |Z _a1 -Z _b1 <-> b0 _n2 |Z _a2 -Z _b2)
7 6 conv zeqm
_G -> (modZ(_n1): _a1 = _b1 <-> modZ(_n2): _a2 = _b2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)