theorem zeqmeq3d (_G: wff) (n a _b1 _b2: nat): $ _G -> _b1 = _b2 $ > $ _G -> (modZ(n): a = _b1 <-> modZ(n): a = _b2) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | _G -> n = n |
|
2 | eqidd | _G -> a = a |
|
3 | hyp _h | _G -> _b1 = _b2 |
|
4 | 1, 2, 3 | zeqmeqd | _G -> (modZ(n): a = _b1 <-> modZ(n): a = _b2) |