theorem zeqmeq2d (_G: wff) (n _a1 _a2 b: nat): $ _G -> _a1 = _a2 $ > $ _G -> (modZ(n): _a1 = b <-> modZ(n): _a2 = b) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | _G -> n = n |
|
2 | hyp _h | _G -> _a1 = _a2 |
|
3 | eqidd | _G -> b = b |
|
4 | 1, 2, 3 | zeqmeqd | _G -> (modZ(n): _a1 = b <-> modZ(n): _a2 = b) |