theorem zeqm01 (a b: nat): $ modZ(0): a = b <-> a = b $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(modZ(0): a = b <-> 0 |Z a -Z b) -> (0 |Z a -Z b <-> a = b) -> (modZ(0): a = b <-> a = b) |
2 |
|
zdvdeq1 |
b0 0 = 0 -> (b0 0 |Z a -Z b <-> 0 |Z a -Z b) |
3 |
2 |
conv zeqm |
b0 0 = 0 -> (modZ(0): a = b <-> 0 |Z a -Z b) |
4 |
|
b00 |
b0 0 = 0 |
5 |
3, 4 |
ax_mp |
modZ(0): a = b <-> 0 |Z a -Z b |
6 |
1, 5 |
ax_mp |
(0 |Z a -Z b <-> a = b) -> (modZ(0): a = b <-> a = b) |
7 |
|
bitr |
(0 |Z a -Z b <-> a -Z b = 0) -> (a -Z b = 0 <-> a = b) -> (0 |Z a -Z b <-> a = b) |
8 |
|
zdvd01 |
0 |Z a -Z b <-> a -Z b = 0 |
9 |
7, 8 |
ax_mp |
(a -Z b = 0 <-> a = b) -> (0 |Z a -Z b <-> a = b) |
10 |
|
zsubeq0 |
a -Z b = 0 <-> a = b |
11 |
9, 10 |
ax_mp |
0 |Z a -Z b <-> a = b |
12 |
6, 11 |
ax_mp |
modZ(0): a = b <-> a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)