Theorem zdvd01 | index | src |

theorem zdvd01 (a: nat): $ 0 |Z a <-> a = 0 $;
StepHypRefExpression
1 bitr3
(b0 0 |Z a <-> 0 |Z a) -> (b0 0 |Z a <-> a = 0) -> (0 |Z a <-> a = 0)
2 zdvdeq1
b0 0 = 0 -> (b0 0 |Z a <-> 0 |Z a)
3 b00
b0 0 = 0
4 2, 3 ax_mp
b0 0 |Z a <-> 0 |Z a
5 1, 4 ax_mp
(b0 0 |Z a <-> a = 0) -> (0 |Z a <-> a = 0)
6 bitr
(b0 0 |Z a <-> 0 || zabs a) -> (0 || zabs a <-> a = 0) -> (b0 0 |Z a <-> a = 0)
7 zdvdb01
b0 0 |Z a <-> 0 || zabs a
8 6, 7 ax_mp
(0 || zabs a <-> a = 0) -> (b0 0 |Z a <-> a = 0)
9 bitr
(0 || zabs a <-> zabs a = 0) -> (zabs a = 0 <-> a = 0) -> (0 || zabs a <-> a = 0)
10 dvd01
0 || zabs a <-> zabs a = 0
11 9, 10 ax_mp
(zabs a = 0 <-> a = 0) -> (0 || zabs a <-> a = 0)
12 zabseq0
zabs a = 0 <-> a = 0
13 11, 12 ax_mp
0 || zabs a <-> a = 0
14 8, 13 ax_mp
b0 0 |Z a <-> a = 0
15 5, 14 ax_mp
0 |Z a <-> a = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)