theorem zdvd01 (a: nat): $ 0 |Z a <-> a = 0 $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bitr3 |
(b0 0 |Z a <-> 0 |Z a) -> (b0 0 |Z a <-> a = 0) -> (0 |Z a <-> a = 0) |
| 2 |
|
zdvdeq1 |
b0 0 = 0 -> (b0 0 |Z a <-> 0 |Z a) |
| 3 |
|
b00 |
b0 0 = 0 |
| 4 |
2, 3 |
ax_mp |
b0 0 |Z a <-> 0 |Z a |
| 5 |
1, 4 |
ax_mp |
(b0 0 |Z a <-> a = 0) -> (0 |Z a <-> a = 0) |
| 6 |
|
bitr |
(b0 0 |Z a <-> 0 || zabs a) -> (0 || zabs a <-> a = 0) -> (b0 0 |Z a <-> a = 0) |
| 7 |
|
zdvdb01 |
b0 0 |Z a <-> 0 || zabs a |
| 8 |
6, 7 |
ax_mp |
(0 || zabs a <-> a = 0) -> (b0 0 |Z a <-> a = 0) |
| 9 |
|
bitr |
(0 || zabs a <-> zabs a = 0) -> (zabs a = 0 <-> a = 0) -> (0 || zabs a <-> a = 0) |
| 10 |
|
dvd01 |
0 || zabs a <-> zabs a = 0 |
| 11 |
9, 10 |
ax_mp |
(zabs a = 0 <-> a = 0) -> (0 || zabs a <-> a = 0) |
| 12 |
|
zabseq0 |
zabs a = 0 <-> a = 0 |
| 13 |
11, 12 |
ax_mp |
0 || zabs a <-> a = 0 |
| 14 |
8, 13 |
ax_mp |
b0 0 |Z a <-> a = 0 |
| 15 |
5, 14 |
ax_mp |
0 |Z a <-> a = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)