Theorem subsnsn | index | src |

theorem subsnsn (a: nat): $ subsn (sn a) $;
StepHypRefExpression
1 subsneq
sn a == {a1 | a1 = a} -> (subsn (sn a) <-> subsn {a1 | a1 = a})
2 elsn
a1 e. sn a <-> a1 = a
3 2 eqab2i
sn a == {a1 | a1 = a}
4 1, 3 ax_mp
subsn (sn a) <-> subsn {a1 | a1 = a}
5 subsnsn2
subsn {a1 | a1 = a}
6 4, 5 mpbir
subsn (sn a)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)