Theorem sndisj | index | src |

theorem sndisj (A: set) (a: nat): $ sn a i^i A == 0 <-> ~a e. A $;
StepHypRefExpression
1 bitr
(sn a i^i A == 0 <-> sn a C_ Compl A) -> (sn a C_ Compl A <-> ~a e. A) -> (sn a i^i A == 0 <-> ~a e. A)
2 ineq0
sn a i^i A == 0 <-> sn a C_ Compl A
3 1, 2 ax_mp
(sn a C_ Compl A <-> ~a e. A) -> (sn a i^i A == 0 <-> ~a e. A)
4 bitr
(sn a C_ Compl A <-> a e. Compl A) -> (a e. Compl A <-> ~a e. A) -> (sn a C_ Compl A <-> ~a e. A)
5 snss
sn a C_ Compl A <-> a e. Compl A
6 4, 5 ax_mp
(a e. Compl A <-> ~a e. A) -> (sn a C_ Compl A <-> ~a e. A)
7 elcpl
a e. Compl A <-> ~a e. A
8 6, 7 ax_mp
sn a C_ Compl A <-> ~a e. A
9 3, 8 ax_mp
sn a i^i A == 0 <-> ~a e. A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)