Theorem sublistAteq3d | index | src |

theorem sublistAteq3d (_G: wff) (n L1 _L21 _L22: nat):
  $ _G -> _L21 = _L22 $ >
  $ _G -> (sublistAt n L1 _L21 <-> sublistAt n L1 _L22) $;
StepHypRefExpression
1 eqidd
_G -> n = n
2 eqidd
_G -> L1 = L1
3 hyp _h
_G -> _L21 = _L22
4 1, 2, 3 sublistAteqd
_G -> (sublistAt n L1 _L21 <-> sublistAt n L1 _L22)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)