Theorem ssv1 | index | src |

theorem ssv1 (A: set): $ _V C_ A <-> A == _V $;
StepHypRefExpression
1 ssasym
A C_ _V -> _V C_ A -> A == _V
2 ssv2
A C_ _V
3 1, 2 ax_mp
_V C_ A -> A == _V
4 ssid
_V C_ _V
5 sseq2
A == _V -> (_V C_ A <-> _V C_ _V)
6 4, 5 mpbiri
A == _V -> _V C_ A
7 3, 6 ibii
_V C_ A <-> A == _V

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)