theorem srecpeq2d (_G: wff) (A: set) (_n1 _n2: nat): $ _G -> _n1 = _n2 $ > $ _G -> (srecp A _n1 <-> srecp A _n2) $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqsidd | _G -> A == A  | 
        |
| 2 | hyp _h | _G -> _n1 = _n2  | 
        |
| 3 | 1, 2 | srecpeqd | _G -> (srecp A _n1 <-> srecp A _n2)  |