theorem srecpeq2d (_G: wff) (A: set) (_n1 _n2: nat): $ _G -> _n1 = _n2 $ > $ _G -> (srecp A _n1 <-> srecp A _n2) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsidd | _G -> A == A |
|
2 | hyp _h | _G -> _n1 = _n2 |
|
3 | 1, 2 | srecpeqd | _G -> (srecp A _n1 <-> srecp A _n2) |