theorem srecpeq1d (_G: wff) (_A1 _A2: set) (n: nat): $ _G -> _A1 == _A2 $ > $ _G -> (srecp _A1 n <-> srecp _A2 n) $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hyp _h | _G -> _A1 == _A2  | 
        |
| 2 | eqidd | _G -> n = n  | 
        |
| 3 | 1, 2 | srecpeqd | _G -> (srecp _A1 n <-> srecp _A2 n)  |