theorem sreceq2d (_G: wff) (S: set) (_n1 _n2: nat): $ _G -> _n1 = _n2 $ > $ _G -> srec S _n1 = srec S _n2 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsidd | _G -> S == S |
|
2 | hyp _h | _G -> _n1 = _n2 |
|
3 | 1, 2 | sreceqd | _G -> srec S _n1 = srec S _n2 |