Theorem sreceq1d | index | src |

theorem sreceq1d (_G: wff) (_S1 _S2: set) (n: nat):
  $ _G -> _S1 == _S2 $ >
  $ _G -> srec _S1 n = srec _S2 n $;
StepHypRefExpression
1 hyp _h
_G -> _S1 == _S2
2 eqidd
_G -> n = n
3 1, 2 sreceqd
_G -> srec _S1 n = srec _S2 n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)