theorem srecauxeq2d (_G: wff) (S: set) (_n1 _n2: nat): $ _G -> _n1 = _n2 $ > $ _G -> srecaux S _n1 = srecaux S _n2 $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqsidd | _G -> S == S | |
| 2 | hyp _h | _G -> _n1 = _n2 | |
| 3 | 1, 2 | srecauxeqd | _G -> srecaux S _n1 = srecaux S _n2 |