theorem srecauxeq1d (_G: wff) (_S1 _S2: set) (n: nat): $ _G -> _S1 == _S2 $ > $ _G -> srecaux _S1 n = srecaux _S2 n $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp _h | _G -> _S1 == _S2 |
|
2 | eqidd | _G -> n = n |
|
3 | 1, 2 | srecauxeqd | _G -> srecaux _S1 n = srecaux _S2 n |