Theorem sepeq2d | index | src |

theorem sepeq2d (_G: wff) (n: nat) (_A1 _A2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> sep n _A1 = sep n _A2 $;
StepHypRefExpression
1 eqidd
_G -> n = n
2 hyp _h
_G -> _A1 == _A2
3 1, 2 sepeqd
_G -> sep n _A1 = sep n _A2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)